Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Mater Today Bio ; 26: 101056, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38660474

RESUMEN

Diabetic foot ulcer (DFU) is a highly morbid complication in patients with diabetes mellitus, necessitating the development of innovative pharmaceuticals to address unmet medical needs. Sodium ion (Na+) is a well-established mediator for membrane potential and osmotic equilibrium. Recently, Na+ transporters have been identified as a functional regulator of regeneration. However, the role of Na+ in the intricate healing process of mammalian wounds remains elusive. Here, we found that the skin wounds in hyponatremic mice display a hard-to-heal phenotype. Na+ ionophores that were employed to increase intracellular Na+ content could facilitate keratinocyte proliferation and migration, and promote angiogenesis, exhibiting diverse biological activities. Among of them, monensin A emerges as a promising agent for accelerating the healing dynamics of skin wounds in diabetes. Mechanistically, the elevated mitochondrial Na+ decelerates inner mitochondrial membrane fluidity, instigating the production of reactive oxygen species (ROS), which is identified as a critical effector on the monensin A-induced improvement of wound healing. Concurrently, Na+ ionophores replenish H+ to the mitochondrial matrix, causing an enhancement of mitochondrial energy metabolism to support productive wound healing programs. Our study unfolds a new role of Na+, which is a pivotal determinant in wound healing. Furthermore, it directs a roadmap for developing Na+ ionophores as innovative pharmaceuticals for treating chronic dermal wounds in diabetic patients.

2.
J Pharm Anal ; 14(3): 401-415, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38618249

RESUMEN

Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by Kelch-like ECH-associated protein 1 (Keap1) alkylation plays a central role in anti-inflammatory therapy. However, activators of Nrf2 through alkylation of Keap1-Kelch domain have not been identified. Deoxynyboquinone (DNQ) is a natural small molecule discovered from marine actinomycetes. The current study was designed to investigate the anti-inflammatory effects and molecular mechanisms of DNQ via alkylation of Keap1. DNQ exhibited significant anti-inflammatory properties both in vitro and in vivo. The pharmacophore responsible for the anti-inflammatory properties of DNQ was determined to be the α, ß-unsaturated amides moieties by a chemical reaction between DNQ and N-acetylcysteine. DNQ exerted anti-inflammatory effects through activation of Nrf2/ARE pathway. Keap1 was demonstrated to be the direct target of DNQ and bound with DNQ through conjugate addition reaction involving alkylation. The specific alkylation site of DNQ on Keap1 for Nrf2 activation was elucidated with a synthesized probe in conjunction with liquid chromatography-tandem mass spectrometry. DNQ triggered the ubiquitination and subsequent degradation of Keap1 by alkylation of the cysteine residue 489 (Cys489) on Keap1-Kelch domain, ultimately enabling the activation of Nrf2. Our findings revealed that DNQ exhibited potent anti-inflammatory capacity through α, ß-unsaturated amides moieties active group which specifically activated Nrf2 signal pathway via alkylation/ubiquitination of Keap1-Kelch domain, suggesting the potential values of targeting Cys489 on Keap1-Kelch domain by DNQ-like small molecules in inflammatory therapies.

3.
Animals (Basel) ; 14(6)2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38539951

RESUMEN

Zoo animals, harboring zoonotic gastrointestinal protozoal diseases, pose potential hazards to the safety of visitors and animal keepers. This study involved the collection and examination of 400 fresh fecal samples from 68 animal species, obtained from five zoos. The aim of this study was to determine the occurrence, genetic characteristics, and zoonotic potential of common gastrointestinal protists. PCR or nested PCR analysis was conducted on these samples to detect four specific parasites: Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi, and Blastocystis spp. The overall prevalence of Cryptosporidium spp was 0.5% (2/400), G. duodenalis was 6.0% (24/400), Blastocystis spp. was 24.5% (98/400), and E. bieneusi was 13.5% (54/400). G. duodenalis, Blastocystis spp., and E. bieneusi were detected in all of the zoos, exhibiting various zoonotic genotypes or subtypes. G. duodenalis-positive samples exhibited three assemblages (D, E, and B). Blastocystis spp. subtypes (ST1, ST2, ST3, ST4, ST5, ST8, ST10, ST13, and ST14) and one unknown subtype (ST) were identified. A total of 12 genotypes of E. bieneusi were identified, including SC02, BEB6, Type IV, pigEBITS 7, Peru8, PtEb IX, D, CD9, EbpC, SCBB1, CM4, and CM7. Moreover, significant differences in the positive rates among different zoos were observed (p < 0.01). The findings indicate that zoo animals in China are affected by a range of intestinal protozoa infections. Emphasizing molecular identification for specific parasite species or genotypes is crucial for a better understanding of the zoonotic risk. Preventing and controlling parasitic diseases in zoos is not only vital for zoo protection and management but also holds significant public health implications.

4.
Angew Chem Int Ed Engl ; : e202403365, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454191

RESUMEN

Meroterpenoids of the ochraceopones family featuring a linear tetracyclic scaffold exhibit exceptional antiviral and anti-inflammatory activities. The biosynthetic pathway and chemical logic to generate this linear tetracycle, however, remain unknown. In this study, we identified and characterized all biosynthetic enzymes to afford ochraceopones and elucidated the complete biosynthetic pathway. We demonstrated that the linear tetracyclic scaffold of ochraceopones was derived from an angular tetracyclic precursor. A multifunctional cytochrome P450 OchH was validated to catalyze the free-radical-initiated carbon-carbon bond cleavage of the angular tetracycle. Then, a new carbon-carbon bond was verified to be constructed using a new aldolase OchL, which catalyzes an intramolecular aldol reaction to form the linear tetracycle. This carbon-carbon bond fragmentation and aldol reaction cascade features an unprecedented strategy for converting a common angular tetracycle to a distinctive linear tetracyclic scaffold in meroterpenoid biosynthesis.

5.
Org Lett ; 26(8): 1677-1682, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38363662

RESUMEN

A known polycyclic tetramate macrolactam (aburatubolactam C, 3) and three new ones (aburatubolactams D-F, 4-6, respectively) were isolated from the marine-derived Streptomyces sp. SCSIO 40070. The absolute configuration of 3 was established by X-ray analysis. A combinatorial biosynthetic approach unveiled biosynthetic enzymes dictating the formation of distinct 5/5-type ring systems (such as C7-C14 cyclization by AtlB1 in 5 and C6-C13 cyclization by AtlB2 in 6) in aburatubolactams.


Asunto(s)
Streptomyces , Ciclización
6.
J Nat Prod ; 87(2): 371-380, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38301035

RESUMEN

Thiazole scaffold-based small molecules exhibit a range of biological activities and play important roles in drug discovery. Based on bioinformatics analysis, a putative biosynthetic gene cluster (BGC) for thiazole-containing compounds was identified from Streptomyces sp. SCSIO 40020. Heterologous expression of this BGC led to the production of eight new thiazole-containing compounds, grisechelins E, F, and I-N (1, 2, 5-10), and two quinoline derivatives, grisechelins G and H (3 and 4). The structures of 1-10, including their absolute configurations, were elucidated by HRESIMS, NMR spectroscopic data, ECD calculations, and single-crystal X-ray diffraction analysis. Grisechelin F (2) is a unique derivative, distinguished by the presence of a salicylic acid moiety. The biosynthetic pathway for 2 was proposed based on bioinformatics analysis and in vivo gene knockout experiments. Grisechelin E (1) displayed moderate antimycobacterial activity against Mycobacterium tuberculosis H37Ra (MIC of 8 µg mL-1).


Asunto(s)
Streptomyces , Streptomyces/genética , Streptomyces/química , Antibacterianos/farmacología , Espectroscopía de Resonancia Magnética , Ácido Salicílico , Tiazoles
7.
Sci Data ; 11(1): 83, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238343

RESUMEN

In the automotive industry, machinery failures of the resistance spot welding (RSW) guns would interrupt the manufacturing lines and cause unplanned downtime, potentially resulting in a significant loss of production and reliability. Predicting the machinery failures of the RSW gun can provide more scientific strategies for predictive maintenance and decision-making. However, fault prediction of RSW guns has become increasingly challenging due to their complex behavior and data variability. In this paper, we created a benchmark dataset and proposed welding gun fault prediction benchmarks to aid in the development of machine learning approaches toward welding gun fault prediction. The dataset was collected at the Body-Shop (BS) of BMW Brilliance Automotive Ltd. from different components of hundreds of RSW guns to capture the patterns and trends before welding errors with historical data. Then we provide state-of-the-art machine learning (ML) benchmarks on time series forecasting methods in a welding gun fault prediction use case. This study will provide insights for time series forecasting while enabling ML researchers to contribute towards the fault prediction of the RSW guns.

8.
Org Biomol Chem ; 22(6): 1152-1156, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38214554

RESUMEN

Two C-methylated fluostatins (FSTs) B3 (1) and B4 (2) were synthesized from flavin-mediated nonenzymatic epoxide ring-opening reactions of FST C. The structures of 1 and 2 were elucidated by HRESIMS, NMR, and ECD spectroscopic analyses. A subsequent 13C labeling study demonstrated that the C-methyl groups of 1 and 2 were derived from DMSO and enabled the mechanistic proposal of a nonenzymatic C-methylation.


Asunto(s)
Metilación , Espectroscopía de Resonancia Magnética
9.
ChemMedChem ; 19(3): e202300619, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103004

RESUMEN

Naturally occurring resistances diminish the effectiveness of antibiotics, and present significant challenges to human health. Human activities are usually considered as the main drivers of the dissemination of antibiotic resistance, however, the origin of the clinical antibiotic resistance can be traced to the environmental microbes, and the clinically relevant resistance determinants have already pre-existed in nature before the antibiotics come into clinic. In this concept, we present the naturally occurring and widespread resistance determinants recently discovered during the biosynthesis study of bioactive compounds. These widely prevalent resistances in environmental microbes, including antibiotic producers and non-producers, advance the understanding of the origin of resistance, and provide prediction for the clinically relevant resistance to aid in the rational design of more effective drug analogues to combat resistance.


Asunto(s)
Productos Biológicos , Humanos , Productos Biológicos/farmacología , Antibacterianos/farmacología , Farmacorresistencia Microbiana
10.
J Am Chem Soc ; 145(50): 27886-27899, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38055632

RESUMEN

The antibacterial agents deoxynybomycin (DNM) and nybomycin (NM) have a unique tetracyclic structure featuring an angularly fused 4-oxazoline ring. Here, we report the identification of key enzymes responsible for forming the 4-oxazoline ring in Embleya hyalina NBRC 13850 by comparative bioinformatics analysis of the biosynthetic gene clusters encoding structurally similar natural products DNM, deoxynyboquinone (DNQ), and diazaquinomycins (DAQs). The N-methyltransferase DnmS plays a crucial role in catalyzing the N-dimethylation of a tricyclic precursor prenybomycin to generate NM D; subsequently, the Fe(II)/α-ketoglutarate-dependent dioxygenase (Fe/αKGD) DnmT catalyzes the formation of a 4-oxazoline ring from NM D to produce DNM; finally, a second Fe/αKGD DnmU catalyzes the C-12 hydroxylation of DNM to yield NM. Strikingly, DnmT is shown to display unexpected functions to also catalyze the decomposition of the 4-oxazoline ring and the N-demethylation, thereby converting DNM back to prenybomycin, to putatively serve as a manner to control the intracellular yield of DNM. Structure modeling, site-directed mutagenesis, and quantum mechanics calculations provide mechanistic insights into the DnmT-catalyzed reactions. This work expands our understanding of the functional diversity of Fe/αKGDs in natural product biosynthesis.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Quinolonas , Catálisis , Compuestos Ferrosos/química
11.
Angew Chem Int Ed Engl ; 62(51): e202310728, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37917570

RESUMEN

Regio- and chemoselective C-H activation at multi-positions of a single molecule is fascinating but chemically challenging. The homologous cytochrome P450 enzymes IkaD and CftA catalyze multiple C-H oxidations on the same polycyclic tetramate macrolactam (PoTeM) ikarugamycin, with distinct regio- and chemoselectivity. Herein we provide mechanistic understanding of their functional differences by solving crystal structures of IkaD and CftA in complex with ikarugamycin and unnatural substrates. Distinct conformations of the F/G region in IkaD and CftA are found to differentiate the orientation of PoTeM substrates, by causing different binding patterns with polar moieties to determine site selection, oxidation order, and chemoselectivity. Fine-tuning the polar subpocket altered the regioselectivity of IkaD, indicating that substrate re-orientation by mutating residues distal to the oxidation site could serve as an important method in future engineering of P450 enzymes.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Lactamas , Sistema Enzimático del Citocromo P-450/metabolismo , Oxidación-Reducción , Catálisis , Especificidad por Sustrato
12.
Eur J Anaesthesiol ; 40(11): 805-816, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37789753

RESUMEN

BACKGROUND: A protective intra-operative lung ventilation strategy has been widely recommended for laparoscopic surgery. However, there is no consensus regarding the optimal level of positive end-expiratory pressure (PEEP) and its effects during pneumoperitoneum. Electrical impedance tomography (EIT) has recently been introduced as a bedside tool to monitor lung ventilation in real-time. OBJECTIVE: We hypothesised that individually titrated EIT-PEEP adjusted to the surgical intervention would improve respiratory mechanics during and after surgery. DESIGN: Randomised controlled trial. SETTING: First Medical Centre of Chinese PLA General Hospital, Beijing. PATIENTS: Seventy-five patients undergoing robotic-assisted laparoscopic hepatobiliary and pancreatic surgery under general anaesthesia. INTERVENTIONS: Patients were randomly assigned 2 : 1 to individualised EIT-titrated PEEP (PEEPEIT; n = 50) or traditional PEEP 5 cmH2O (PEEP5 cmH2O; n = 25). The PEEPEIT group received individually titrated EIT-PEEP during pneumoperitoneum. The PEEP5 cmH2O group received PEEP of 5 cmH2O during pneumoperitoneum. MAIN OUTCOME MEASURES: The primary outcome was respiratory system compliance during laparoscopic surgery. Secondary outcomes were individualised PEEP levels, oxygenation, respiratory and haemodynamic status, and occurrence of postoperative pulmonary complications (PPCs) within 7 days. RESULTS: Compared with PEEP5 cmH2O, patients who received PEEPEIT had higher respiratory system compliance (mean values during surgery of 44.3 ±â€Š11.3 vs. 31.9 ±â€Š6.6, ml cmH2O-1; P < 0.001), lower driving pressure (11.5 ±â€Š2.1 vs. 14.0 ±â€Š2.4 cmH2O; P < 0.001), better oxygenation (mean PaO2/FiO2 427.5 ±â€Š28.6 vs. 366.8 ±â€Š36.4; P = 0.003), and less postoperative atelectasis (19.4 ±â€Š1.6 vs. 46.3 ±â€Š14.8 g of lung tissue mass; P = 0.003). Haemodynamic values did not differ significantly between the groups. No adverse effects were observed during surgery. CONCLUSION: Individualised PEEP by EIT may improve intra-operative pulmonary mechanics and oxygenation without impairing haemodynamic stability, and decrease postoperative atelectasis. TRIAL REGISTRATION: Chinese Clinical Trial Registry (www.chictr.org.cn) identifier: ChiCTR2100045166.


Asunto(s)
Neumoperitoneo , Atelectasia Pulmonar , Humanos , Impedancia Eléctrica , Neumoperitoneo/etiología , Pulmón/diagnóstico por imagen , Respiración con Presión Positiva/métodos , Atelectasia Pulmonar/etiología , Atelectasia Pulmonar/prevención & control , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/prevención & control , Tomografía/métodos
13.
Biology (Basel) ; 12(8)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37627030

RESUMEN

Macrobenthos is widely used as an indicator of ecological health in marine monitoring and assessment. The present study aimed to characterize the interrelationships between the distribution of the macrobenthos community and environmental factors near Xiaoqing Estuary, Laizhou Bay. Responses of species richness to environmental factors were studied using the generalized additive model (GAM) and the Margalef diversity index (dM) as indicators of species diversity instead of individual indicator species. Six factors were selected in the optimal model by stepwise regression: sediment factors (organic matter, phosphate, nitrate nitrogen, and ammonium nitrogen) and water factors (salinity, and ammonium nitrogen). The response curves generated by the GAM showed a unimodal relationship among taxa diversity, salinity in water, and sediment organic matter. dM was positively correlated with ammonium nitrogen in water and was negatively correlated with phosphate in the sediment. The model optimized by forward stepwise optimization explained 92.6% of the Margalef diversity index with a small residual (2.67). The model showed good performance, with the measured dM strongly correlated with the predicted dM (Pearson R2 = 0.845, p < 0.05). The current study examined the combined influence of multiple eco-factors on macrobenthos, and the Margalef diversity index of macrobenthos was predicted by the GAM model in a salinity-stressed estuary.

14.
Org Lett ; 25(34): 6346-6351, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37606755

RESUMEN

Tetronate antibiotics make up a growing family of natural products with a wide variety of biological activities. Herein, we report four new tetronates kongjuemycins (KJMs, 5-8) from a coral-associated actinomycete Pseudonocardia kongjuensis SCSIO 11457, and the identification and characterization of the KJM biosynthetic gene cluster (kjm) by heterologous expression, comparative genomic analysis, isotope labeling, and gene knockout studies. The biosynthesis of KJMs is demonstrated to harness diverse precursors from primary metabolism for building secondary metabolites.

15.
Biomol Biomed ; 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37540586

RESUMEN

Globally, pancreatic cancer is recognized as one of the deadliest malignancies that lacks effective targeted therapies. This study aims to explore the role of cyclin I-like protein (CCNI2), a homolog of cyclin I (CCNI), in the progression of pancreatic cancer, thereby providing a theoretical basis for its treatment. Firstly, the expression of CCNI2 in pancreatic cancer tissues was determined through immunohistochemical staining. The biological role of CCNI2 in pancreatic cancer cells was further assessed using both in vitro and in vivo loss/gain-of-function assays. Our data revealed that CCNI2 expression was abnormally elevated in pancreatic cancer, and clinically, increased CCNI2 expression generally correlated with reduced overall survival. Functionally, CCNI2 contributed to the malignant progression of pancreatic cancer by promoting the proliferation and migration of tumor cells. Consistently, in vivo experiments verified that CCNI2 knockdown impaired the tumorigenic ability of pancreatic cancer cells. Moreover, the addition of phosphatidylinositol 3-kinase (PI3K) inhibitors could partially reverse the promoting effect of CCNI2 on the malignant phenotypes of pancreatic cancer cells. CCNI2 promoted pancreatic cancer through PI3K/protein kinase B (AKT) signaling pathway, indicating its potential as a prognostic marker and therapeutic target for pancreatic cancer.

16.
J Nat Prod ; 86(8): 2046-2053, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37566707

RESUMEN

Depsidones are significant in structural diversity and broad in biological activities; however, their biosynthetic pathways have not been well understood and have attracted considerable attention. Herein, we heterologously reconstituted a depsidone encoding gene cluster from Ovatospora sp. SCSIO SY280D in Aspergillus nidulans A1145, leading to production of mollicellins, a representative family of depsidones, and discovering a bifunctional P450 monooxygenase that catalyzes both ether formation and hydroxylation in the biosynthesis of the mollicellins. The functions of a decarboxylase and an aromatic prenyltransferase are also characterized to understand the tailoring modification steps. This work provides important insights into the biosynthesis of mollicellins.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Depsidos , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Lactonas , Éteres , Familia de Multigenes , Vías Biosintéticas
17.
Anesth Analg ; 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37144921

RESUMEN

BACKGROUND: In the past 20 years, anesthesiology has become one of the most advanced specialties and has undergone rapid development. However, public awareness regarding anesthesiology and anesthesiologists is limited, especially in developing countries. It is important for anesthesiologists to make the public aware of their role during surgery. Therefore, a nationwide survey was set up to investigate public awareness of anesthesiology and anesthesiologists in China. METHOD: A cross-sectional nationwide survey was performed from June 2018 to June 2019 in 34 provinces, municipalities, and autonomous regions across China and an overseas region. The questionnaires of the survey were divided into 2 main parts: general items and research items. General items included the demographic characteristics of the participants; research items consisted of 10 questions about the public's awareness of anesthesiologists and anesthesiology. Data quality control was undertaken by the investigation committee throughout the survey process. RESULTS: The nationwide survey enrolled 1,001,279 participants (male, 40.7%). We found that most of the participants regarded anesthesiologists as doctors. However, public knowledge of anesthesiologists' work and duties during surgery was quite low, with correct response rate ranging from 16.5% to 52.9%, and anesthesiologist responsibilities were often mistakenly attributed to surgeons or nurses. It is disappointing that more than half of participants still thought that, once the patient fell asleep after receiving anesthetics, the anesthesiologist could leave the operating room. Finally, the correct response rate was positively correlated with the economic levels of the regions. CONCLUSIONS: Public awareness regarding anesthesiology and anesthesiologists in China remains inadequate. Due to the biases and characteristics of the participants, the actual situation of the general Chinese public is likely even worse than reflected here. Therefore, extensive measures should be undertaken to improve public knowledge of anesthesiology and anesthesiologists.

18.
Plant J ; 115(4): 967-985, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158663

RESUMEN

N6 -Methyladenosine (m6 A) is the most abundant methylation modification in eukaryotic mRNA. The discovery of the dynamic and reversible regulatory mechanism of m6 A has greatly promoted the development of m6 A-led epitranscriptomics. However, the characterization of m6 A in cotton fiber is still unknown. Here, we reveal the potential link between m6 A modification and cotton fiber elongation by parallel m6 A-immunoprecipitation-sequencing (m6 A-seq) and RNA-seq analysis of fibers from the short fiber mutants Ligonliness-2 (Li2 ) and wild-type (WT). This study demonstrated a higher level of m6 A in the Li2 mutant, with the enrichment of m6 A modifications in the stop codon, 3'-untranslated region and coding sequence regions than in WT cotton. In the correlation analysis between genes containing differential m6 A modifications and differentially expressed genes, we identified several genes that could potentially regulate fiber elongation, including cytoskeleton, microtubule binding, cell wall and transcription factors (TFs). We further confirmed that the methylation of m6 A affected the mRNA stability of these fiber elongation-related genes including the TF GhMYB44, which showed the highest expression level in the RNA-seq data and m6 A methylation in the m6 A-seq data. Next, the overexpression of GhMYB44 reduces fiber elongation, whereas the silencing of GhMYB44 produces longer fibers. In summary, these results uncover that m6 A methylation regulated the expression of genes related to fiber development by affecting mRNA's stability, ultimately affecting cotton fiber elongation.


Asunto(s)
Fibra de Algodón , Gossypium , RNA-Seq , ARN Mensajero/genética , ARN Mensajero/metabolismo , Gossypium/genética , Gossypium/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
19.
J Nat Prod ; 86(4): 986-993, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37042607

RESUMEN

Fidaxomicin (Dificid) is a commercial macrolide antibiotic for treating Clostridium difficile infection. Total synthesis of fidaxomicin and its aglycone had been achieved through different synthetic schemes. In this study, an alternative biological route to afford the unique 18-membered macrolactone aglycone of fidaxomicin was developed. The promoter refactored fidaxomicin biosynthetic gene cluster from Dactylosporangium aurantiacum was expressed in the commonly used host Streptomyces albus J1074, thereby delivering five structurally diverse fidaxomicin aglycones with the corresponding titers ranging from 4.9 to 15.0 mg L-1. In general, these results validated a biological strategy to construct and diversify fidaxomicin aglycones on the basis of promoter refactoring and heterologous expression.


Asunto(s)
Antibacterianos , Streptomyces griseus , Fidaxomicina , Macrólidos/metabolismo , Streptomyces griseus/genética , Familia de Multigenes , Aminoglicósidos
20.
Aging (Albany NY) ; 15(8): 3171-3190, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100454

RESUMEN

As the most common transcriptional regulators, zinc finer proteins (ZNFs) play vital roles in occurrence and progression of malignant tumors. Whereas, information regarding the roles of ZNFs in soft tissue sarcomas (STS) remains scarce. In this study, a comprehensive bioinformatics analysis investigating roles of ZNFs in STS was performed. Initially, we extracted raw datasets of differentially expressed ZNFs from GSE2719. Using a sequence of bioinformatics methods, we then investigated the prognostic significance, function, and molecular subtype of these differentially expressed ZNFs. In addition, CCK8 and plate clone formation assays were used to explore the effect of ZNF141 on STS cells. A total of 110 differentially expressed ZNFs were identified. Nine ZNFs (HLTF, ZNF292, ZNF141, LDB3, PHF14, ZNF322, PDLIM1, NR3C2, and LIMS2) were selected to establish an overall survival (OS) prediction model, and seven ZNFs (ZIC1, ZNF141, ZHX2, ZNF281, ZNHIT2, NR3C2, and LIMS2) were used to develop a progression-free survival (PFS) prediction model. Compared with patients with low-risk in the TCGA training and testing cohorts, as well as the GEO validation cohorts, patients with high-risk had poorer OS and PFS. Using nomograms constructed with the identified ZNFs predicting OS and PFS, we established a clinically useful model. Four distinct molecular subtypes with different prognostic and immune infiltration characteristics were identified. In vitro experiments showed that ZNF141 promoted the proliferation and viability of STS cells. In conclusion, ZNF-related models are useful as prognostic biomarkers, suggesting their potentials as therapeutic targets in STS. These findings will enable us to develop novel strategies treating STS, which will potentially improve outcomes of patients with STS.


Asunto(s)
Sarcoma , Humanos , Pronóstico , Nomogramas , Supervivencia sin Progresión , Dedos de Zinc/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Proteínas Represoras , Fosfoproteínas , Proteínas de Homeodominio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...